On Macroscopic and Microscopic Analyses for Crack Initiation and Crack Growth Toughness in Ductile Alloys
نویسنده
چکیده
Relationships between crack initiation and crack growth toughness are reviewed by examining the crack tip fields and microscopic (local) and macroscopic (continuum) fracture criteria for the onset and continued quasi-static extension of cracks in ductile materials. By comparison of the micromechanisms of crack initiation via transgranular cleavage and crack initiation and subsequent growth via microvoid coalescence, expressions are shown for the fracture toughness of materials in terms of microstructural parameters, including those deduced from fractographic measurements. In particular the distinction between the deformation fields directly ahead of stationary and nonstationary cracks are explored and used to explain why microstructure may have a more significant role in influencing the toughness of slowly growing, as opposed to initiating, cracks. Utilizing the exact asymptotic crack tip deformation fields recently presented by Rice and his co-workers for the nonstationary plane strain Mode I crack and evoking various microscopic failure criteria for such stable crack growth, a relationship between the tearing modulus TR and the nondimensionalized crack initiation fracture toughness Ji~ is described and shown to yield a good fit to experimental toughness data for a wide range of steels.
منابع مشابه
Fracture and Fatigue-Crack Growth Behavior in Mo-12Si-8.5B Intermetallics at Ambient and Elevated Temperatures
perhaps the most progress has been made with alloys based on nickel and especially titanium aluminides. These alloys can Boron-containing molybdenum silicides have received some exhibit significant room temperature ductility, at least compared interest of late due to their superior low-temperature "pest" to other intermetallics, but have the major disadvantage that their resistance and comparab...
متن کاملHIGH-TEMPERATURE FRACTURE AND FATIGUE RESISTANCE OF A DUCTILE b-TiNb REINFORCED g-TiAl INTERMETALLIC COMPOSITE
ÐThe high-temperature fatigue-crack propagation and fracture resistance of a model g-TiAl intermetallic composite reinforced with 20 vol.% ductile b-TiNb particles is examined at elevated temperatures of 650 and 8008C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of g-TiAl, even at high temperatures, from about 12 to 040 MPa m, a...
متن کاملSimulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model
The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture...
متن کاملAmbient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic
Boron-containing molybdenum silicides have been the focus of significant research of late due to their potentially superior lowtemperature ‘‘pest’’ resistance and high-temperature oxidation resistance comparable to that of MoSi2-based silicides; however, like many ordered intermetallics, they are plagued by poor ductility and toughness properties. Of the various multiphase Mo–Si–B intermetallic...
متن کاملTwo mechanisms of ductile fracture: void by void growth versus multiple void interaction
Two distinct mechanisms of crack initiation and advance by void growth have been identified in the literature on the mechanics of ductile fracture. One is the interaction a single void with the crack tip characterizing initiation and the subsequent void by void advance of the tip. This mechanism is represented by the early model of Rice and Johnson and the subsequent more detailed numerical com...
متن کامل